\qquad

C.U.SHAH UNIVERSITY

 Summer Examination-2019Subject Name : Engineering Mathematics - III

Subject Code : 4TE03EMT1

Semester : 3

Date : 11/03/2019

Branch: B.Tech (All)
Time : 02:30 To 05:30

Marks : 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:

a) One of the Dirichlet's condition is function $f(x)$ should be
(A) single valued (B) multi valued (C) real valued (D) None of these
b) If $f(x)=x$ is represented by Fourier series in $(-\pi, \pi)$ then a_{0} equal to
(A) $\pi / 2$
(B) π
(C) 0
(D) 2π
c) In the Fourier series expansion of $f(x)=x^{3}$ in $(-1,1)$
(A) only sine terms are present (B) both sine and cosine terms are present (C) only cosine terms are present (D) constant term is present
d) Laplace transform of C^{t+1} is
(A) $\frac{1}{S-C}$
(B) $\frac{C^{1}}{S-\log C}(S>\log C)$
(C) $\frac{C^{2}}{S+\log C}$
(D) None of these
e)
$\mathrm{L}^{-1}\left(\frac{12}{s^{2}-9}\right)=$ \qquad
(A) $3 \sinh 4 t$
(B) $4 \sinh 3 t$
(C) $4 \cosh 3 t$
(D) $3 \cosh 4 t$
f) Inverse Laplace transform of 1 is
(A) 1
(B) $\delta(t)$
(C) $\delta(t-1)$
(D) $u(t)$
g) The C. F. of the differential equation $\left(D^{2}-3 D+2\right) y=e^{2 x}$ is
(A) $c_{1} e^{x}+c_{2} e^{2 x}$
(B) $c_{1} e^{-x}+c_{2} e^{-2 x}$
(C) $c_{1} e^{-x}+c_{2} e^{2 x}$
(D) $c_{1} e^{x}+c_{2} e^{-2 x}$
h) The P.I. of $\left(D^{2}+a^{2}\right) y=\sin a x$ is
(A) $-\frac{x}{2 a} \cos a x$
(B) $\frac{x}{2 a} \cos a x$
(C) $-\frac{a x}{2} \cos a x$
(D) None of these
i) The P. I of $(D-a) y=X$, (where $X=k$ is constant) equal to
(A) $-\frac{k}{a}$
(B) $\frac{\mathrm{k}}{\mathrm{a}}$
(C) ka (D) -ka
j) The solution of $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=0$ is
(A) $z=f_{1}(y+x)+f_{2}(x-y)$
(B) $z=f_{1}(y+x)+f_{2}(y-x)$
(C) $z=f\left(x^{2}-y^{2}\right)$
(D) None of these
k) Eliminating arbitrary function from $z=f\left(x^{2}+y^{2}\right)$, the partial differential equation formed is
(A) $x q=y p$
(B) $x p=y q$
(C) $z=p q$
(D) None of these

1) The general solution of the equation $x p+y q=z$ is
(A) $F\left(\frac{x}{y}, \frac{y}{z}\right)=0$
(B) $F(x y, x+y)=0$
(C) $F\left(\frac{y}{x}, \frac{z}{y}\right)=0$
(D) None of these
m) The order of convergence in Bisection method is
(A) linear (B) quadratic
(C) zero
(D) None of these
n) The criterion for convergence for solving $f(x)=0$ by the Newton Raphson method is
(A) $\left|\left\{f^{\prime}(x)\right\}^{2}\right|>\left|f(x) \cdot f^{\prime \prime}(x)\right|$
(B) $\left|\left\{f^{\prime}(x)\right\}^{2}\right|<\left|f(x) \cdot f^{\prime \prime}(x)\right|$
(C) $\left|\left\{f^{\prime}(x)\right\}^{2}\right|=\left|f(x) \cdot f^{\prime \prime}(x)\right|$
(D) None of these

Attempt any four questions from Q-2 to Q-8

Attempt all questions

a) Given that one of the roots of the non-linear equation $x^{3}-2 x-5=0$ lies
in the interval $(1.75,2.5)$. Find the root correct to four significant digits using False position method.
b) Using Newton-Raphson method, find the root of $f(x)=\sin x+\cos x$ correct to three decimal places.
c) Evaluate: $L\left(t e^{2 t} \cos 3 t\right)$

Attempt all questions
a) Show that $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}$ in the interval $-\pi \leq x \leq \pi$.

$$
0-1020
$$

b) Obtain Fourier series for the function $f(x)= \begin{cases}\pi x, & 0 \leq x \leq 1 \\ \pi(2-x), & 1 \leq x \leq 2\end{cases}$
c) Given that one root of the equation $x^{3}-4 x+1=0$ lies between 1 and 2 .

Find the root correct to 3 significant digits using Secant method.
Attempt all questions
a) Solve $y^{\prime \prime}+y=t, y(\pi)=0, y^{\prime}(0)=1$
b) Using convolution theorem, evaluate $\mathrm{L}^{-1}\left\{\frac{s}{\left(s^{2}+4\right)^{2}}\right\}$.
c) Solve: $p z-q z=z^{2}+(x+y)^{2}$

Attempt all questions
a) Evaluate: $L^{-1}\left(\frac{s}{s^{4}+s^{2}+1}\right)$

b) Solve: $\frac{d^{3} y}{d x^{3}}+y=3+e^{-x}+5 e^{2 x}$
c) Solve: $\frac{\partial^{2} z}{\partial x^{2}}-4 \frac{\partial^{2} z}{\partial y^{2}}=\cos 2 x \cos 2 y$

Q-6

Q-7

Q-8

Attempt all questions
a) Solve: $\left(D^{2}-1\right) y=\cosh x \cos x$
b) Obtain a half - range sine series to represent $f(x)=l x-x^{2}$ in the range $(0, l)$.
c) Solve: $\mathrm{L}\left(\frac{e^{-a t}-e^{-b t}}{t}\right)$

Attempt all questions

a) Solve by the method of variation of parameters: $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x$
b) Solve: $(x+1)^{2} \frac{d^{2} y}{d x^{2}}+(x+1) \frac{d y}{d x}+y=2 \cos [\log (1+x)]$
c) Solve: $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=e^{x+4 y}$

Attempt all questions

a) Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, given $u(x, 0)=6 e^{-3 x}$
b) The following table gives the variations of periodic current $t=f(t)$ amperes over a period T sec.

$t(\mathrm{sec}):$	0	$\frac{\mathrm{~T}}{6}$	$\frac{\mathrm{~T}}{3}$	$\frac{\mathrm{~T}}{2}$	$\frac{2 \mathrm{~T}}{3}$	$\frac{5 \mathrm{~T}}{6}$	T
$i(\mathrm{~A}):$	1.98	1.30	1.05	1.30	-0.88	-0.5	1.98

Show, by harmonic analysis, that there is a direct current part of 0.75 amp. in the variable current and obtain the amplitude of the first harmonic.

