Enrollment No:		
Enronnent No:		

Exam Seat No:____

C.U.SHAH UNIVERSITY

Summer Examination-2019

Subject Name: Engineering Mathematics – III

Subject Code: 4TE03EMT1 Branch: B.Tech (All)

Semester: 3 Date: 11/03/2019 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) One of the Dirichlet's condition is function f(x) should be
 (A) single valued (B) multi valued (C) real valued (D) None of these
- **b)** If f(x) = x is represented by Fourier series in $(-\pi, \pi)$ then a_0 equal to (A) $\pi/2$ (B) π (C) 0 (D) 2π
- c) In the Fourier series expansion of $f(x) = x^3$ in (-1, 1)(A) only sine terms are present (B) both sine and cosine terms are present (C) only cosine terms are present (D) constant term is present
- **d**) Laplace transform of C^{t+1} is

(A)
$$\frac{1}{S-C}$$
 (B) $\frac{C^1}{S-\log C} \left(S > \log C\right)$ (C) $\frac{C^2}{S+\log C}$

(D) None of these

e)
$$L^{-1}\left(\frac{12}{s^2-9}\right) =$$

- (A) $3\sinh 4t$ (B) $4\sinh 3t$ (C) $4\cosh 3t$ (D) $3\cosh 4t$
- f) Inverse Laplace transform of 1 is

(A) 1 (B)
$$\delta(t)$$
 (C) $\delta(t-1)$ (D) $u(t)$

g) The C. F. of the differential equation $(D^2 - 3D + 2)y = e^{2x}$ is

(A)
$$c_1 e^x + c_2 e^{2x}$$
 (B) $c_1 e^{-x} + c_2 e^{-2x}$ (C) $c_1 e^{-x} + c_2 e^{2x}$ (D) $c_1 e^x + c_2 e^{-2x}$

h) The P.I. of $(D^2 + a^2)y = \sin ax$ is

(A)
$$-\frac{x}{2a}\cos ax$$
 (B) $\frac{x}{2a}\cos ax$ (C) $-\frac{ax}{2}\cos ax$ (D) None of these

i) The P. I of (D-a)y = X, (where X = k is constant) equal to

(A)
$$-\frac{k}{a}$$
 (B) $\frac{k}{a}$ (C) ka (D) $-ka$

j) The solution of $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$ is

(A)
$$z = f_1(y+x) + f_2(x-y)$$
 (B) $z = f_1(y+x) + f_2(y-x)$

- (C) $z = f(x^2 y^2)$ (D) None of these
- **k**) Eliminating arbitrary function from $z = f(x^2 + y^2)$, the partial differential equation formed is
 - (A) xq = yp (B) xp = yq (C) z = pq (D) None of these
- 1) The general solution of the equation xp + yq = z is

(A)
$$F\left(\frac{x}{y}, \frac{y}{z}\right) = 0$$
 (B) $F\left(xy, x+y\right) = 0$ (C) $F\left(\frac{y}{x}, \frac{z}{y}\right) = 0$

- (D) None of these
- m) The order of convergence in Bisection method is
 - (A) linear (B) quadratic (C) zero (D) None of these
- **n**) The criterion for convergence for solving f(x) = 0 by the Newton Raphson method is

(A)
$$|\{f'(x)\}^2| > |f(x) \cdot f''(x)|$$
 (B) $|\{f'(x)\}^2| < |f(x) \cdot f''(x)|$

(C)
$$\left| \left\{ f'(x) \right\}^2 \right| = \left| f(x) \cdot f''(x) \right|$$
 (D) None of these

Attempt any four questions from Q-2 to Q-8

- Q-2 Attempt all questions (14)
 - a) Given that one of the roots of the non-linear equation $x^3 2x 5 = 0$ lies in the interval (1.75, 2.5). Find the root correct to four significant digits using False position method. (5)
 - **b)** Using Newton-Raphson method, find the root of $f(x) = \sin x + \cos x$ (5) correct to three decimal places.
 - c) Evaluate: $L(t e^{2t} \cos 3t)$ (4)
- Q-3 Attempt all questions (14)
 - a) Show that $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ in the interval $-\pi \le x \le \pi$.
 - **b)** Obtain Fourier series for the function $f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi(2-x), & 1 \le x \le 2 \end{cases}$ (5)
 - c) Given that one root of the equation $x^3 4x + 1 = 0$ lies between 1 and 2. (4) Find the root correct to 3 significant digits using Secant method.
- Q-4 Attempt all questions (14)
 - a) Solve y'' + y = t, $y(\pi) = 0$, y'(0) = 1 (5)
 - **b)** Using convolution theorem, evaluate $L^{-1} \left\{ \frac{s}{\left(s^2 + 4\right)^2} \right\}$. (5)
 - c) Solve: $pz qz = z^2 + (x + y)^2$
- Q-5 Attempt all questions (14)
 - a) Evaluate: $L^{-1}\left(\frac{s}{s^4+s^2+1}\right)$ (5)

b)	Solve: $\frac{d^3y}{dx^3} + y = 3 + e^{-x} + 5e^{2x}$	(5)
------------	---	-----

c) Solve:
$$\frac{\partial^2 z}{\partial x^2} - 4 \frac{\partial^2 z}{\partial y^2} = \cos 2x \cos 2y$$
 (4)

Q-6 Attempt all questions

(14) (5)

a) Solve: $(D^2-1)y = \cosh x \cos x$

e (5)

b) Obtain a half – range sine series to represent $f(x) = lx - x^2$ in the range (0, l).

c) Solve:
$$L\left(\frac{e^{-at}-e^{-bt}}{t}\right)$$
 (4)

Q-7 Attempt all questions

(14)

- a) Solve by the method of variation of parameters: $\frac{d^2y}{dx^2} + a^2y = \sec ax$ (5)
- **b)** Solve: $(x+1)^2 \frac{d^2 y}{dx^2} + (x+1) \frac{dy}{dx} + y = 2\cos[\log(1+x)]$ (5)

c) Solve:
$$\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{x+4y}$$
 (4)

Q-8 Attempt all questions

(14)

- Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, given $u(x, 0) = 6e^{-3x}$
- **b)** The following table gives the variations of periodic current t = f(t) amperes over a period T sec. (7)

amperes over a period 1 sec.								
t (sec):	t (sec) :	0	<u>T</u>	<u>T</u>	<u>T</u>	<u>2T</u>	<u>5T</u>	Т
		6	3	2	3	6		
	<i>i</i> (A) :	1.98	1.30	1.05	1.30	-0.88	-0.5	1.98

Show, by harmonic analysis, that there is a direct current part of 0.75 amp. in the variable current and obtain the amplitude of the first harmonic.

